International Federation The International Federation of Head and Neck Oncologic Societies

and Neck Oncologic Societie

Current Concepts in Head and Neck Surgery and Oncology 2017

www.ifhnos.net

The International Federation of Head and Neck Oncologic Societies

Current Concepts in Head and Neck Surgery and Oncology 2017

Salvage Surgery for Non-Surgical Treatment Failures: Oropharynx,Larynx/Hypopharynx Dr.Patrick Gullane

Purpose of the Presentation

- Review the evidence with regard to the efficacy of salvage surgery after nonsurgical treatment of the Oropharynx and Larynx/Hypopharynx
- Review our experience with complications following salvage surgery
- Present a treatment approach to reduce complications in patients undergoing salvage for recurrent or persistent oropharyngeal laryngeal/Hypopharyngeal cancer

Estimated HPV Contribution to Cancer – WHO

WHO/ICO Information Centre on HPV and Cervical Cancer (HPV Information Centre). Human Papillomavirus and Related Cancers in World. Summary Report 2010. Available at www. who. int/ hpvcentre/statistics/en/

Treatment

2017

Treatment

Oropharyngeal Cancer-P.M.H

10 % 0 Actuarial incidence 90 80 70 60 HPV-50 HPV+ 40 10 2 6 8 30 87% vs 59%, p<0.001 20 1 8 Time (Years)

Cause Specific Survival

HPV + OPC better outcome
 HPV(+) > Biology poorly understood
 HPV(-) > Treatment is the same as HPV- OPC

UHN data from Bio-Clinical Anthology of Outcomes

Toxicity

Fearl and Neck Oncologie

So We Are Seeing A Shifting Landscape In Treatment to Minimize Toxicity

- Surgery
 - Open approach
 - Free tissue transfer
 - Minimally invasive
 - Laser, robotic
- Radiotherapy
 - Hyperfractionation
 - IMRT
 - 85% survival-PMH
 - Proton
- Chemotherapy
 - Concurrent
 - Induction
 - Biologics

In your case, there's a choice – elective surgery, outpatient radiation/chemotherapy, or you can be part of a protocol.

Primary Oropharyngeal Treatment Outcome-Not all Cured

 9-20% Develop Locoregional Recurrence

Oropharyngeal more challenging than any other Head and Neck site for complete resection due to the complex anatomy

30% Unresectable at presentation
7-10% Develop distant Metastases

When primary therapy with Chemo/Radiation fails – Should we Consider Salvage Surgery?

Should we therefore consider Salvage Surgery? "It Depends On"

- Stage of the Disease-early vs delayed
- Recurrent vs Persistent
- Clear Understanding of the original extent of disease
- Surgically resectable as no adjuvant available
- Carefully consider likely functional outcome relative to patients probability of survival including co-morbidities and life style expectations
- Time of recurrence < than or > than 1 year

Salvage Surgery:Post Chemo-RT: M.D Anderson Series

The Role of Salvage Surgery in Patients With Recurrent Squamous Cell Carcinoma of the Oropharynx

Mark E. Zafereo, MD¹; Matthew M. Hanasono, MD²; David I. Rosenthal, MD³; Erich M. Sturgis, MD⁴; Jan S. Lewin, PhD⁴; Diana B. Roberts, PhD⁴; and Randal S. Weber, MD⁴

Zafereo et al Cancer 2009

- Retrospective review
- Population
 - –1681 OP patients →168 local recurrences
 - -41 surgery, 18 RT, palliative chemo 70, supportive care 39
- Management
 - Planned restaging 6 weeks after completing RT or CRT
 - T3/T4 had operative restaging

Good, Bad and Ugly. Disease free interval to recurrence: Important factor in outcome

A Read and Veck Onclude and

Zafereo et al

• Conclusions:

- Very select group can achieve long-term survival
- Despite careful selection of these 41 patients, outcomes were still poor (28% 5year survival)
- Favorable candidates:
 - Younger
 - Disease-free interval after definitive therapy
 - Small recurrent tumors
 - Negative margins
 - No recurrent neck disease

Salvage Surgery of Locally Recurrent Oropharyngeal

Cancer Princess Margaret Experience

Samip N. Patel MD¹, Marc A. Cohen MD¹, Babak Givi MD¹, Benjamin J. Dixon MD¹, Ralph W. Gilbert MD¹, Patrick J. Gullane MD¹, Dale H. Brown MD¹, Jonathan C. Irish MSc MD¹, John R. de Almeida MSc MD¹, Kevin M. Higgins MSc², Danny Enepekides MSc², Shao Hui Huang³, John Waldron MD³, Brian O'Sullivan MD³, Wei Xu PhD⁴, Susie Su MSc⁴, David P. Goldstein MSc MD¹

This study aimed to determine the success rate of salvage surgery for locally recurrent oropharynx cancer and in addition factors influencing the outcome including p16 status.

Salvage Surgery for Locally Recurrent Oropharyngeal Cancer:.Patel, Samip,Gullane, P, Goldstein, David,Gilbert R.Irish J et al Head and Neck Surgery-Vol 40, July 2015

Salvage Surgery for OPC

Primary Objectives

- Assess survival outcomes in salvage oropharyngectomy cases.
- Determine the Permanent tracheotomy and G-tube rates.
- Evaluate the incidence of perioperative complications.

Secondary Objectives

 The secondary objective was to assess predictors of outcome including HPV status (p16).

Salvage Surgery for OPC -2000-2012 -1163 consecutive Oropharyngeal patients -122 pts Recurrent OPC -88 pts - "Non-Salvage" -distant mets, unresectable, poor performance, patient choice -34 pts - Salvage surgery 28 (82%) J, 6 (18%) P Median age - 61.2 yrs(41.2-75.9)

Salvage SurgeryVariableNumber of Patients
n=34 (%)

Primary Tumor Site Tonsil Base of Tongue Soft Palate **Posterior Wall** Initial Tumor Classification Τ1 T2 **T**3 Τ4

Neck Openhell

Salvage Surgery for OPC

Variable	Number of Patients (%)	Variable	Number of Potionts (%
Primary Tumor			Fatients (%)
Site		Initial Nodal Classifi	cation
Tonsil	19 (55.9)	N0	7 (20.6)
Base of Tongue	13 (38.2)	N1	9 (26.5)
Soft Palate	1 (2.9)	N2	16 (47.1)
Posterior Wall	1 (2.9)	N3	2 (5.9)
Initial Tumor Class	ification	Initial AJCC Stage	
T1	5 (14.7)	Ι	1 (2.9)
T2	10 (29.4)	II	1 (2.9)
T3	10 (29.4)	III	9 (26.5)
2017	9 (26.5)	IV	23 (67.7)
The second se			

and Neck Oncuber

Salvage Surgery

<u>Initial Nodal</u> <u>Classification</u> N0

N1 N2 N3

1 (2.9)

1 (2.9)

9 (26.5) 23 (67.7)

Initial AJCC Stage I II III IV

Salvage Surgery for OPC Variable Number of Patients (%)

Primary Treatment XRT alone Concurrent CRT RT dose (Gy) mean, (range)

> RT dose mode, median RT fraction mean (range) RT fraction mode, median

25 (73.5) 9 (26.5) 65.2 (51-70)

70, 64 34 (20-40) 35, 35

Salvage Surgery		
Variable	Number of Patients n=34 (%)	
Persistent/Recurrent Disease Persistent Recurrent	10 (29.4) 24 (70.6)	
Surgical Oropharyngectomy + Mandibulotomy + Mandibulectomy + Transoral + Total Laryngectomy	26 (76.5) 5 (14.7) 1 (2.9) 2 (5.9)	
Flap Reconstruction* None Pectoralis Muscle Anterolateral Thigh Free	33 (97) 1 (2.9) 6 (17.6) 13 (38.2)	
Flap Radial Forearm Free Flap Latissimus Dorsi Free Flap Rectus Abdominis Free Flap Fibula Free Flap	12 (35.3) 1 (2.9) 1 (2.9) 1 (2.9)	
Length of Hospital Stay Median	17	

Table 2 Salvage Surgery

2017

Mean *One patient received 2 simultaneous free flaps

20.5

Salvage Surgery for OPC

Variable	Number of	Variable	Number of Patients,
	Patients,		n=34 (%)
	<u>n=34 (%)</u>	Flap reconstruction	33 (97)
Persistent/Recurrent Disease		None	1 (2.9)
Persistent	10 (29.4)	Pectoralis Muscle	6 (17.6)
Recurrent	24 (70.6)	Anterolateral Thigh Free Flap	13 (38.2)
		Radial Forearm Free Flap	12 (35.3)
Surgical Oropharyngectomy		Latissimus Dorsi Free Flap	1 (2.9)
+ Mandibulotomy	26 (76.5)	Rectus Abdominis Free Flap	1 (2.9)
+ Mandibulectomy	5 (14.7)	Fibula Free Flap	1 (2.9)
+ Transoral	1 (2.9)	Length of Hospital Stay	
+ Total Laryngectomy	2 (5.9)	Median	17
vuluerrational lederaution		Mean	20.5

and Neck Queuhogie

Post-op Complications

	Type of Complication	Number of Patients (%)*
Total Complications Wound		15 (44.1)
Complications		15 (44.1)
	Minor Wound Infection/	
		/ (20.6)
	Flap Dehiscence	1 (2.9)
	Exposed Hardware**	1 (2.9)
	Fistula	3 (8.8)
	Chronic Wound	
	Infection**	1 (2.9)
	Hematoma	1 (2.9)
	Compartment Syndrome	1 (2.9)
Systemic	,	
Complications		4 (11.8)
	Sepsis ^{***}	1 (2.9)
	Respiratory Failure***	1 (2.9)
	Myocardial Infarction***	1 (2.9)
	Cardiac Arrest***	1 (2.9)
	Syncope	1 (2.9)
line and the second	Pneumonia	1 (2.9)
Table 3. Postoperative Complication	Atrial Fibrillation	1 (2.9)

Head and Neck Openings Speed

⁴ note - numbers represent number of patients affected by each complication. Some patients experienced more than one complication. *2 patients with osteoradionecrosis as a consequence of primary therapy

Post Operative Complications

	Type of Complication	Number of Patients (%)		Type of	Number of
Total			_	Complication	Patients (%)
Complications		15 (44.1)	Systemic Complications		4 (11.8)
Wound Complications		15 (44.1)		Sepsis	1 (2.9)
	Minor Wound Infection/	7 (20.6)		Respiratory Failure	1 (2.9)
Ce Fl	Cellulitis Flap Dehiscence	1 (2.9)		Myocardial Infarction	1 (2.9)
	Exposed Hardware	1 (2.9)		Cardiac Arrest	1 (2.9)
Fi: Ch In:	Fistula	3 (8.8)		Syncope	1 (2.9)
	Chronic Wound Infection**	1 (2.9)		Pneumonia	1 (2.9)
2017	Hematoma	1 (2.9)		Atrial Fibrillation	1 (2.9)
A Head and Neth Onthelle Section	Compartment Syndrome	1 (2.9)			

Overall Survival (OS) of Salvaged vs Non-Salvaged Patients (n=122)

5-Year Recurrence Free Survival (RFS) Stratified by p16 status

*HPV status determined by p16 immunohistochemistry testing

Salvage Surgery- Take home Message

- 34 patients underwent salvage surgery.
- 5 patients (14.7%) were tracheostomy dependent
- 22 (64.7%) had permeant gastrostomy tube after salvage surgery.
- Post-operative complications occurred in 15/34 (44%) patients.

Salvage Surgery-Take home Message

- Recurrence-free survival after salvage surgery was 41% and 25% at 3 and 5 years, respectively.
- The presence of nodal disease at the time of local recurrence, close or positive margins and lymphovascular invasion were the only factors associated with worse survival on univariable analysis.
- HPV status based on p16 status was not associated with either overall or recurrence-free survival.

Salvage Surgery for OPC

- Overall 7/34 (20.50%) alive at 5 years.
 - All >5yrs post initial treatment
- Other factors associated with failed salvage
 - Margin Status
 - p=0.007
 - -rT3/T4 Staging 100% failure
 - p=0.033

Surgical Principles-Take Home Message-Handling the Mandible

 What is the role of Rim Mandibulectomy in Salvage Surgery-Post RT or Chemo-RT failure Rim mandibulectomy of radiated mandible

High Risk for ORN

Surgical Principles of Mucosal Reconstruction-Take home Message

- Maintain Mobility of Remaining Tissues
- Restore Functional Characteristices
 - Movement
 - Sensation

Reconstructive Options in the Salvage Setting- Take Home Message

- Saleraft
 Loca a s-Tongue
- Regional Myocutaneous

Free Tissue Options-			
Take Home Message			
	Flap Thickness	Volume Adjustment	Sensate
Forearm	++++	++	++++
Anterolateral Thigh	+++	++++	++
Lateral Arm	++	++++	++
Fibula	+++	++	++
Conclusions

Surgical salvage for OPSCC after failure of radiotherapy (+/- chemotherapy) is feasible. Patients that may benefit from surgery include those without regional recurrence and/or those in whom negative margins can be obtained. However, patients may be tracheotomy or gastrostomy tube dependent. HPV p16 status did not appear to have prognostic impact in the salvage setting, however larger series are required to assess this relationship.

The International Federation of Head and Neck Oncologic Societies

Current Concepts in Head and Neck Surgery and Oncology 2017

Salvage Surgery for Non-Surgical Treatment Failures: Larynx/Hypopharynx

Dr. Patrick Gullane

Evolution of Organ Preservation Strategies Cancer of the Larynx, *Hypopharynx*

- 1960's Laryngectomy/Pharyngectomy
- 1970's Laryngectomy alone Planned radiation with surgery for salvage
- 1980's Irradiation +/- Chemotherapy (5FU, Mitomycin C)
- 1990's VA Trial, (Neoadjuvant Chemo/Rad or Laryngectomy)
- 2000's Adoption of Organ Preservation Approaches

What about Surgical Salvage Following Organ Preservation Strategies?

- Increasing trend over the past decade to adopt organ preservation strategies using either concomitant chemoradiation or accelerated or hyperfractionated radiotherapy.
- While these approaches have increased the likelihood of primary control in certain head and neck mucosal malignancies, when this approach fails and surgical salvage is required the sequelae of the primary treatment creates major
 challenges for patients and their surgeons.

M Neck Oncuber

Hostile Wound

High Fistula Rate

Salvage Surgery Following Irradiation ± Chemotherapy

Grau C. Salvage laryngectomy & pharyngocutaneous fistulae after primary radiotherapy for head and neck cancer: a national survey from DAHANCA. *Head & Neck. 25(9):711-6, 2003*

Fistula Rate 9% to 57%

 Table 4. The influence of previous radiotherapy on fistulae incidence after laryngectomy. Survey of reports published since 1990 with more than 100 patients.

Author	Year	No. patients	Fistulae		RT significant risk
			All	Previous RT	factor for fistulae
Sarkar 1990 ⁵	1981-1985	242	35%	57%	Yes
McCombe 1993 ⁶	1965-1990	357	23%	39%	Yes
Natvig 1993 ⁷	1980-1987	197	14%	19%	Yes
Hier 19938	1981-1991	126	19%	20%	If short interval after RT
Papazoglu 1994 ⁹	1980-1989	310	9%	14%	Yes
Celikkanat 199514	1985-1994	110	17%	2 <u>0 - 2</u> 5	N/A
Greisen 199715	1975-1989	107	12%	1 <u></u>	N/A
Parikh, Gullane 1998	1992-1996	125	22%	23%	No
Soylu 199813	1975-1995	295	13%	19%	No
de Zinis 1999 ¹⁷	1988-1995	246	16%	16%	No
Herranz 2000 ¹⁸	1980-1997	471	21%		(No RT given)
Virtaniemi 2001 ¹⁰	1975-1995	133	15%	29%	Only for Co-60
Grau 2003 (current series)	1987-1997	472	21%	21%	(All had RT)

Abbreviations: N/A, not available; RT, radiotherapy.

and Neck Openhous

Primary and Salvage (Hypo)Pharyngectomy: Analysis and Outcome

 Jonathan Clark, John de Almeida, Ralph Gilbert, Jonathan Irish, Dale Brown, Peter Neligan, Patrick Gullane

Head and Neck 28:671 - 677, 2006

PMH Experience (Clarke et al 2006)

- Retrospective chart review 1992 2002
- N = 153
- Mean age 62 yrs
- 35 females, 118 males
- Mean follow up 3.2 yrs.
- All patients undergoing resection and flap reconstruction of the hypopharynx
- Analyse specifically
 - Initial treatment modality (salvage v primary surgery)
 - Defect extent
 - Type of flap reconstruction
 - Fasciocutaneous versus enteric free flap reconstruction

Indications for Surgery

Post definitive radiotherapy 80 (52%) – Salvage for recurrence 75 – Stricture 5 Primary surgery 73 (48%) - Prior radiotherapy (other site) 38 – Advanced disease 30 – Non-SCC 5

Reconstruction-153 Defects

- Pharyngeal defect extent
 - Partial 85 (56%)
 - Circumferential 68 (44%)
- Initial reconstruction

 Pectoralis major 68
- Gastric transposition 21

- Free flap 64

and Neck Oncuber

	Complication -	Frequency w/	%	Frequency w/o	%
	Early	Hypocalcemia		Hypocalcemia	
	Total	109	71%	84	55%
	Wound	38	25%	38	25%
	Dehiscence	25	16%	25	16%
	Infection	11	7%	11	7%
	Skin necrosis	2	1%	2	1%
	Vascular	14	9%	14	9%
	Hematoma	7	5%	7	5%
	Major vessel rupture	7	5%	7	5%
	Fistula	51	33%	51	33%
	Flap	20	13%	20	13%
	Necrosis	9	6%	9	6%
	Free flap failure	3	4.7%	3	4.7%
	Donor site	6	4%	б	4%
	Stent migration	4	36%	4	36%
2017	Cardiopulmonary	21	14%	21	14%
With and Neck Out	Hypocalcemia	69	45%		

Predictors of Pharyngeal Complications

Effect of Initial Treatment Salvage versus Primary Surgery Salvage pharyngectomy (postradiation) associated with increased – Pharyngocutaneous Fistula (p = 0.048)Trend towards - Wound complications (p = 0.12) - Major vessel rupture (p = 0.07) • 1% v 8% - Length of stay (p = 0.07) - Time to oral intake (p = 0.07)

2017

Conclusions

- Early and late morbidity following laryngopharyngeal reconstruction remains substantial despite technical advances.
- Morbidity can be predicted by:
 - initial treatment modality
 - method of reconstruction
 - extent of defect reconstruction

Patient co-morbidity

What are the options for laryngopharyngeal reconstruction in 2017?

• "between a rock and a hard place"

Rabinovich

Phases in Development in Pharyngeal Reconstruction

- <u>Regional Flaps</u>
- Cutaneous
- •
- •
- Myocutaneous
- <u>Viscus</u>
- Gastric Pull Up
- •
- Colonic Interposition
- <u>Free Flap</u>

 \bigcirc

 \bigcirc

0

- Jejunal graft
 - *Tube Radial Forearm Anterolateral Thigh*
 - Gastro-omental

- 1877 Czerny 1942 - Wookey 1965 - Bakamjian 1979 - Ariyan
- 1912 Jianu 1949 - Ong & Lee 1998 - Wei et al 1954 - Goligher
- 1956 Seidenberg 1979 - Yang 1984 - Song 1979 - Baudet

Harold Wookev

- Redesigned cervical flap
- Broad based pedicle
- More reliable 2 stage reconstruction
- 6 8 weeks

Dr. Harold Wookey Head, Division of General Surgery Toronto General Hospital 1935 – 1951

Surgical treatment of carcinoma of the pharynx and upper oesophagus. Surg Gynecol Obstet 1942;75:499

Problems with Wookey Flap

- Using tissue within radiation field
- Staged reconstruction
 - Aspiration
- > 90% complication rate
 - Fistula
 - Sepsis / Mediastinitis
- Length of esophagus resectable
- Mortality > 30%

The person who has a disease is more important than the disease a person William Osler

Reconstructive Options Following Salvage Laryngopharyngectomy 2017 Pectoralis Major Pedicled Flap

Radial Forearm Flap Free Jejunal Graft

Anterolateral Thigh Flap

Gastro-omental Flap Gastric Transposition

How do we decide?

Methods of Reconstruction Then

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental flap

Methods of Reconstruction Now

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental flap

The Pectoralis Major Myocutaneous Flap

"You Can't Tube the New York Yellow Pages"

Richard Hayden

When should we use a Pedicled Pectoralis Major Flap?

In Repair of partial Pharyngeal defects

Pharyngeal Reconstruction with PMMF

- 67 patients (1987-1999)
- 37-82 years
- 97% flap success
- 17% fistula rate
 - 12% spontaneous closure
 - 5% second flap
- Permanent G-tube 2%
- Vocal rehabilitation 74%

Primary role in 2017 is reconstruction of partial pharyngeal defects.

Yeek Oocub

Freeman JL, Gullane PJ Rotstein LM: "The Double Paddle Pectoralis Major Myocutaneous Flap. J Otol. 1985

Methods of Reconstruction Now – on occasion

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental
 flap

CURRENT STATUS OF PHARYNGOLARYNGO-ESOPHAGECTOMY AND PHARYNGOGASTRIC ANASTOMOSIS

William Wei, Lai Kun Lam, Po Wing Yue, John Wong Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong

HEAD & NECK May 1998

Table 1. Location of the primary tumor.					
Years	Patient no.	Larynx	Hypopharynx	Cervical esophagus	
1966–1979 ⁸ 1980–1985 ⁹ 1986–1995 Total	157 91 69 317	83 (53%) 39 (43%) 0 (0%) 122	67 (43%) 41 (45%) 37 (54%) 145	7 (4%) 11 (12%) 32 (46%) 50	

When should we use a Gastric Transposition?

Table 2. Mortality and morbidity.				
Years	Patient	Anastomotic	Hospital	
	no.	leakage	mortality	
1966–1979 ⁸	157	36 (23%)	49 (31%)	
1980–1985 ⁹	91	10 (11%)	11 (12%)	
1986–1995	69	6 (9%)	6 (9%)	
Total	317	52	66	

and Neck Oncuber

Series of Gastric Transpositions

Goldberg M. Freeman J. Gullane PJ. Patterson GA. Todd TR. McShane D. Transhiatal esophagectomy with gastric transposition for pharyngolaryngeal malignant disease. J Thor Cardiovasc Surg. 97(3):327-33, 1989

- -41 patients (21 prior high dose RT)
- Mortality 14%
- Morbidity 46%
- Fistula 22%
- Mean LOS 31 days – Overall 35% 2YS

Problems

- Perioperative mortality 10 20%
- Length of hospital stay
- Hemorrhage
- Anastomotic disruption and fistula >30%
- Resection extending to nasopharynx a limitation
- Gastric emptying and dumping
- Speech poor

9d Nach Courtel

Last resort form of reconstruction today

Authors	Year	No. of patients	Mortality number (%)	Marbidity number (%)
LeQuesne ⁹	1966	10	3 (30%)	4 (40%)
Leonard ¹⁵	1970	10	2 (20%)	1 (10%)
Stell ¹⁶	1973	24	11 (46%)	1 (4%)
Akiyama ⁴	1975	25	0 (0%)	1 (4%)
Shepperd ¹⁷	1977	19	4 (21%)	7 (37%)
Lam ^e	1981	157	48 (31%)	83 (53%)
Schechter ¹⁸	1982	13	1 (8%)	2 (15%)
Peracchia ¹⁰	1982	32	5 (16%)	15 (47%)
Pradhan ²⁰	1984	25	5 (20%)	5 (20%)
Surkin ¹²	1984	12	1 (8%)	4 (33%)
Jones ²¹	1986	16	8 (50%)	4 (25%)
Harrison ²²	1986	101	11 (11%)	33 (33%)
Lam ⁹	1987	91	10 (11%)	30 (30%)
Goldberg ²³	1989	41	8 (20%)	19 (46%)
Silver-**	1989	15	3 (20%)	8 (53%)
Mehta ¹³	1990	75	7 (9%)	30 (40%)
Spiro14	1991	120	13 (11%)	66 (55%)
Cahow ²⁵	1994	59	8	16 (27%)
Marmuse ²⁶	1995	37	(14%	10 (25%)
Bardini ²⁷	1995	96)	20 (23%)
Total		978	160 (16%)	359 (37%)

Methods of Reconstruction Now – on occasion

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental
 flap

Free Jejunum

Advantages

- Simple, extensive experience in most centres
- Reliable
- Length
- Donor Site Morbidity
- Disadvantages
 - Swallowing
 - In our experience unless radiated post-op average to poor swallowing results
 - Speech
 - TEP speech is a major problem because wet patulous conduit

Hynes B, Boyd JB, Gullane PJ, Manktelow RT, Rotstein LE: "Free Jejunal Grafts in Pharyngoesophageal Reconstruction" CJS Nov 1987

Methods of Reconstruction Now – on occasion

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental flap

Radial Forearm Flap

Savary Fistula tube vital

Tubed Forearm

<u>Pros</u>

- Minimal immediate donor morbidity
- Reliable

and Neck Queded)

- Easy tubulation
- Speech better than jejunum?

<u>Cons</u>

- Stricture
 - ?overcome by salivary tube or Z plasty at distal skin-mucosal junction
- Fistula
- No peristalsis
 - ?advantage

Hypopharyngeal Reconstruction with Lining and Cover

Used as lining for salvage repair with second flap for cover

Methods of Reconstruction Now – frequently

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental flap

When should we use a Anterolateral Thigh Flap?

Stricture rate

No stent 33%
Stent < 10% (p=0.571)

Most commonly used flap in our centre for repair of total circumferential defects.

Tubed Anterolateral Thigh Flap

ANTTI MAKITIE, NIGEL BEASLEY, PETER C. NELIGAN, JOAN LIPA, PATRICK J. GULLANE, RALPH W. GILBERT. Head and neck reconstruction with anterolateral thigh flap *Otolaryngol Head Neck Surg* 2003;129:547-55.

Table 3. Flap characteristics of 39 anterolateral free flaps

	No. of patients
Site of reconstruction	
Laryngopharyngeal	3
Oral or oropharyngeal	20
External skin	14
Other (maxillectomy repair)	2
Recipient vessel	
Superior thyroid artery	19
Facial artery	13
Transverse cervical artery	5
Superficial temporal artery	2
Internal jugular vein	25
External jugular vein	2
Facial vein	6
Transverse cervical vein	3
Superficial temporal vein	2
Previously connected	1
cephalic vein (RFFF)	

RFFF, Radial forearm free flap.

and Neck Oncuber

2007-89 anterolateral thigh flap repairs

Anterolateral Thigh Flap

- Tube anterolateral thigh flap appears to the best reconstructive option in patients with appropriate anatomy.
- The flap can easily reconstruct a defect from nasopharynx to thoracic inlet.
- The Fascial Lata is unique feature providing a second layer of closure not available in other flaps.
- Major disadvantage is the variable vascular anatomy, and potential difficulty in dissection.

Methods of Reconstruction Now – on occasion

- Regional flaps
 - cutaneous
 - myocutaneous
- Viscus
 - gastric pull up
 - colonic interposition
- Free flap
 - jejunal graft
 - tubed radial forearm
 - anterolateral thigh
 - gastro-omental flap

Gastro-Omental Flap

In salvage pharyngecto my following organ preservation therapy in good performance patients.

and Mad Neck Oncohogie

Free Gastro-Omental Transfer

- Summary
- Advantages
 - One Stage, Low Morbidity
 - Unlimited tube diameter,
 - Swallowing
 - Speech
 - Harvest with Omentum
- Disadvantages
 - abdominal harvest, mucoid secretions

Blom-Singer

Options in Pharyngeal Reconstruction 2010

Flap Selection	Swallow	Speech	Morbidity
Anterolateral Thigh + Stent	+++	+++	0
Forearm + Stent	++	+++	0
Free Gastro-Omental	+++	+++	+
Free Jejunum	+	+	+
Gastric Pullup	++++	0	++++

Married Michael

It's Role to be evaluated

Algorithm of Pharyngeal Reconstruction in an Era of Organ Preservation 2010

Conclusions

- Organ preservation approaches clearly provide an opportunity for functional preservation of critical structures.
- Surgical Salvage of these primary treatment approaches is associated with extremely high rates of post operative complications particularly in open mucosal procedures.

Conclusions

- Patients are best served by liberal use of either regional myocutaneous flaps or free tissue transfer.
- This subset of patients are likely best managed in regional centres of excellence with well developed multidisciplinary programs for ablative and reconstructive head and neck surgery with ancillary rehabilitation services.

University Health Network

