International Federation The International Federation of Head and Neck Oncologic Societies

and Neck Oncologic Societie

Current Concepts in Head and Neck Surgery and Oncology 2017

www.ifhnos.net

The International Federation of Head and Neck Oncologic Societies

Current Concepts in Head and Neck Surgery and Oncology 2017

Larynx Preservation: Surgical Options

Dr. Patrick Gullane

Contemporary Surgical Management of Carcinoma of the Larynx

"Cancer is a terrible disease, but I do not accept that the surgeon's scalpel may be more destructive than the disease itself. The war against the larynx must stop, since its removal is unnecessary and ineffective in many cases. To take away the disease without excising a healthy glottis to make an effort to preserve the function of the organ, to strive not to return a disabled person to the society: that is my

motto"

Purpose of the presentation

Review the Management of Early Glottic Cancer

 Radiotherapy vs Transoral laser (TOL)

> Review the Option of Horizontal Partial Laryngectomy in Intermediate Staged Larynx Carcinoma

> > Review the management of recurrent glottic carcinoma following radiation failure

Fundamental Principles Primary issues

Local and regional control of disease

Preservation of functional speech

Preservation of swallowing function

2017

Fundamental Principles Secondary issues

Voice quality

Swallowing efficacy

Duration and Morbidity of Treatment

Cost of Treatment

Staging of Glottic Cancer

Glottis

- T1-Limited to vocal cord(s), normal mobility one cord or both cords
- T2-Supraglottis, subglottis, impaired cord mobility
- T3-Cord fixation, paraglottic space, thyroid cartilage erosion
- T4a-Through thyroid cartilage; trachea, soft tissues of neck; deep/extrinsic muscle of tongue, strap muscles, thyroid, oesophagus
- T4b-Prevertebral space, mediastinal structures, carotid artery

Management Options in Laryngeal Carcinoma

Early stages

laser CO² endoscopic surgery

open partial surgery

radiation therapy

2. Moderately advanced and advanced stages

- laser CO² endoscopic surgery
- supracricoid partial laryngectomies
- partial laryngopharyngectomies
- total laryngectomy
- Altered fractionation Radiation Therapy
- Concomitant Chemoradiatiion
- Neoadjuvant

From Lefebvre

Treatment of choice

Glottic cancer

Treatment of choice

Treatment of choice

There are no treatments of choice but rather choices of treatment

Radiation Treatment Early Glottic Carcinoma

Study	Number of Subjects	Stages	Overall Survival	Local Control
Fletcher ²²	330	T1,T2	-	80%
Horiot ²⁴	415	Tis,T1a,T1b	-	83%
Le ²⁶	398	T1,T2	43%	80%
Wang ²⁸	902	T1,T2	95%	88%
C				
anal tederaries				

201

Head and Neck Ou

Int. J. Radiation Oncology Biol. Phys., Vol. 78, No. 2, pp. 461–466, 2010 Copyright © 2010 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/S-see front matter

doi: 10.1016/j.ij robp. 2009.08.066

CLINICAL INVESTIGATION

Head and Neck

TIN0 TO T2N0 SQUAMOUS CELL CARCINOMA OF THE GLOTTIC LARYNX TREATED WITH DEFINITIVE RADIOTHERAPY

BHISHAMJIT S. CHERA, M.D., ROBERT J. AMDUR, M.D., CHRISTOPHER G. MORRIS, M.S., JESSICA M. KIRWAN, M.A., AND WILLIAM M. MENDENHALL, M.D.

Transoral laser excision in early glottic carcinoma

Study	Number of Subjects	Stages	Overall Survival	Lcoal Control
Gallo ³¹	151	Tis,T1,T2	94%	94%
Eckel ³²	285	Tis,T1,T2	70%	85%
Steiner ³⁰	263	T1a,T1b,T2	76%	88%
				\bigvee
al tederarge				

TRANSORAL LASER SURGERY VERSUS RADIOTHERAPY: SYSTEMATIC REVIEW AND META-ANALYSIS FOR TREATMENT OPTIONS OF T1a GLOTTIC CANCER

Yasin Abdurehim, MD, Zhang Hua, PhD, Yalkun Yasin, Ayihen Xukurhan, Ilham Imam, Fan Yuqin

Department of Otorhinolaryngology, First Teaching Hospital of Xinjiang Medical University, Urumqi, China. E-mail: hzhang1106@yahoo.com.cn

Local Control

	Laser su	rgery	Radiothe	arapy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI Yea	M-H. Random, 95% Cl
1.3.1 6-MV >65 Gy							
Epstein1990[10]	13	17	38	43	7.9%	0.43 [0.10, 1.84] 199	0
Foote 1997[14]	93	106	18	18	2.8%	0.19 [0.01, 3.29] 199	7
Rosier1998[2]	27	31	37	41	7.8%	0.73 [0.17, 3.18] 199	8
Spector1999[15]	47	61	93	104	13.8%	0.40 [0.17, 0.94] 199	9
Stoeckli2003[18]	48	56	38	45	11.0%	1.11 [0.37, 3.32] 200	3
Schrijvers2009[26]	35	49	37	51	13.7%	0.95 [0.40, 2.26] 200	9
Mahler 2009[27]	173	188	155	163	13.5%	0.60 [0.25, 1.44] 200	9
Subtotal (95% CI)		508		465	70.5%	0.63 [0.42, 0.96]	★
Total events	436		416				
Heterogeneity: Tau ² =	0.00; Chi ² =	= 3.95. d	f=6 (P=	0.68); 12	= 0%		
Test for overall effect:	Z = 2.15 (P	= 0.03)		1.65			
132 Co ⁶⁰ or 6-MV <6	O GY						
Krengli2004[19]	117	122	73	80	10.2%	2.24 [0.69, 7.33] 200	4
Goor 2007[22]	51	54	28	31	6.6%	1.82 [0.34, 9.63] 200	7
Thurnher2008[23]	75	81	82	104	12.6%	3.35 [1.29, 8.72] 200	8
Subtotal (95% CI)		257		215	29.5%	2.66 [1.35, 5.24]	•
Total events	243		183				
Heterogeneity: Tau ² =	0.00: Chi2 =	= 0.51. d	f=2(P=	0.78); l ²	= 0%		
Test for overall effect:	Z = 2.82 (P	= 0.005	i)	17.01.17 (4).12.	C 2079 X 20		
	2011/2012/2010/00/07/						
Total (95% CI)		765		680	100.0%	0.94 [0.57, 1.57]	*
Total events	679		599				
Heterogeneity: Tau ² =	0.29; Chi ² =	= 16.87.	df = 9 (P =	= 0.05);	$ ^2 = 47\%$		
Test for overall effect:	Z = 0.22 (P	= 0.83)					0.01 0.1 1 10 100
New Workshop Street registered	2012-018-027770 BC						Favours Radiotherapy Favours Laser surgery

FIGURE 4. Forest plot of comparison between TLS and RT with respect to local control. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Theast and Neck Oncohodie Social

Larynx Preservation

URE 5. Forest plot of comparison between TLS and RT with respect to larynx preservation. [Color figure can be viewed in the ne issue, which is available at wileyonlinelibrary.com.]

Rationale for Transoral Laser for Early Glottic Carcinoma

i. Cost

Outpatient surgery vs 4-6 weeks of Tx

In North America Laser surgery more cost effective

ii. Voice Results?

Dependant on extent of resection

iii. Local Control equal or superior except

Limited access

Anterior commissure

Paraglottic space

Multifocal disease

Management Options in Laryngeal Carcinoma

- Early stages
 - laser CO² endoscopic surgery
 - open partial surgery
 - radiation therapy
- 2. Moderately advanced and advanced stages
 - laser CO² endoscopic surgery
 - Horizontal Partial Laryngectomy
 - partial laryngopharyngectomies
 - total laryngectomy
 - Altered fractionation Radiation Therapy
 - Concomitant Chemoradiation
 - Neoadjuvant

Advanced Laryngeal Cancer Many T2,T3,T4

Vocal fold mobility/ fixation T2/T3

PGS/PE S Invasion T3

Minor Cartilage Erosion T3 Small But Beyond the Larynx T4a

Partial Horizontal Laryngectomy

Open partial horizontal laryngectomies: a proposal for classification by the working committee on nomenclature of the European Laryngological Society

G. Succo · G. Peretti · C. Piazza · M. Remacle · H. E. Eckel · D. Chevalier · R. Simo · A. G. Hantzakos · G. Rizzotto · M. Lucioni · E. Crosetti · A. R. Antonelli

Open Horizontal Partial Laryngectomy

Type I Supraglottic Laryngectomy Type II- Supracricoid Laryngectomy

Type III- Supratracheal Laryngectomy

Type I Horizontal Supraglottic

Supraglottic Laryngectomy

Indications

- Supraglottic T2-T3 limited to the upper medial wall of the piriform sinus or mucosa of the vallecula
- Supraglottic T3 with PES involvement

M Neck Oncuber

Contraindications

- Invasion of cricoid/thyroid cartilage
- ✓ Bilateral Arytenoid
- ✓ Invasion of PC/AC
- ✓ Vocal Cord Fixation
- ✓ Base of tongue involvement

Type I Horizontal-Disease Outcome

Author	T- staging	OS Survival(5yr)	Local Control(5yr)
Spriano 1997	T1-2 (54)	82%	96%
Isaacs 1998	T1 (9) T2(24) T3 (9)	-	100% 78% 72%
Bron 2005	T1 (16) T2 (46) T3 (13)	-	92%

Type I Horizontal-Functional Outcome

- Chronic Aspiration in 1.5-20% of patients
 - (Prades 2005)
- Permanent Trach for edema or stenosis 15%
 – (Sevilla 2008)

Type II Supracricoid laryngectomy

Type IIA

Type IIB

From Succo

Supracricoid Partial Laryngectomy-History

- Foederl 1906-suggested approach of repair of anterior larynx by pulling down the epiglottis
- Alajmo(Italy) 1971-first described modern approach
- Piquet(France) 1974

Laccourreye(France)-1986

Supracricoid Laryngectomy

Indications

- If Glottis and anterior commissure involved
- Invades ventricle
- Vocal cord mobility decreased
- Paraglottic invasion
- Must be able to preserve one arytenoid

Supracricoid Laryngect

Supracricoid Laryngectomy

Indications

- T1-T2 supraglottic extending to the ventricle, false cord, glottis or anterior commissure
- ✓ T3 Transglottic tumors
- ✓ T3 supraglottis with cord fixation
- Invasion of the thyroid cartilage
- Selected anterior commissure tumors

Contraindications

- ✓ Fixation of both arytenoids
- ✓ Subglottic extension >5mm
- ✓ T4a with prelaryngeal infiltration

2017

Supracricoid Laryngectomy with CHEP

- What are the oncologic results?
 Problems with data
 - Selected patients
 - Small number of institutions

Available online at www.sciencedirect.com

www.ejso.com

EJSO xx (2016) 1-12

Review

Systematic review on T3 laryngeal squamous cell carcinoma; still far from a consensus on the optimal organ preserving treatment

M. Riga^{a,*}, L. Chelis^b, V. Danielides^a, T. Vogiatzaki^c, T.-L. Pantazis^d, D. Pantazis^d

^{*}University Otorhinolaryngology Department, Democritus University of Thrace, University Hospital of Evros, Alexandroupolis, Greece

^bDepartment of Clinical Oncology, University Hospital of Evros, Alexandroupolis, Greece ^cDepartment of Anesthesiology, Democritus University of Thrace, University Hospital of Evros, Alexandroupolis, Greece ^dOtorhinolaryngology Department, Thriasion General Hospital of Athens, Greece

Accepted 26 May 2016

T3 Laryngeal Cancer-Riga et al

5-year Overall Survival & Disease-specific Survival

Overall survival Disease specific survival

T3 Laryngeal Cancer-Riga et al

5-year Larynx Preservation and Recurrence Rates

Functional Results Supracricoid

- From Gavilan 2012
- Selected patients

and Neck Oncologie

Type III-Supratracheal Laryngectomy

Oncologic outcomes of supratracheal laryngectomy: Critical analysis

Giuseppe Rizzotto, MD,¹ Erika Crosetti, MD,²* Marco Lucioni, MD,¹ Andy Bertolin, MD,¹ Valentina Monticone, MD,³ Andrea Elio Sprio, PhD,⁴ Giovanni Nicolao Berta, PhD,⁴ Giovanni Succo, MD³⁵

¹Otorhinolaryngology Department, Vittorio Veneto Hospital, Vittorio Veneto, Treviso, Italy, ²Otorhinolaryngology Department, Martini Hospital, Turin, Italy, ³Otorhinolaryngology Department, San Luigi Gonzaga Hospital, Turin, Italy, ⁴Department of Clinical and Biological Sciences, University of Turin, Turin, Italy, ⁵Department of Oncology, University of Turin, Turin, Italy.

Accepted 13 May 2014 Published online 19 July 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/hed.23773

Type III-Supratracheal Laryngectomy

Type III Supratracheal from Succo

a the and wood Neck Ouculotize Server

Supratracheal Laryngectomy

Indications

- Lateral/Anterior transglottic with fixation of one VF, normal mobility on contralateral
- Subglottic extension to upper border of cricoid
- ✓ Cricoid cartilage erosion

Contraindications

- T4a with prelaryngeal involvement
- ✓ Fixation of both arytenoids
- ✓ Tracheal involvement

Type III supratracheal from Rizzotto

	No. of patients (%)	
Age, y		
Mean	58.3 ± 10.8	
Range	16-78	
Sex		
Male	93/115 (80.9)	
Female	22/115 (19.1)	
Karnofsky Performance St	atus	
100	70/115 (60.9)	
90	30/115 (26.1)	
80	15/115 (13.0)	
Pathological grade	Supraglottic	Glottic
pT2	0/115 (0.0)	14/115 (12.2)
pT3	1/115 (0.9)	49/115 (42.6)
pT4a	11/115 (9.6)	40/115 (34.8)
pN0	3/75 (4.0)	65/75 (86.7)
pN1	i take ta ta 1934 in	4/75 (5.3)
pN2		3/75 (4.0)
Level VI pN+		5/7 (71.4)

What about the patient who develops a recurrence following primary radiotherapy?

What about the patient with a T1 or T2 Glottic who fails radiotherapy?

- Total Laryngectomy
 - Often used because of the belief that partial surgery not possible post radiation
- Partial Laryngectomy
 - Often not considered because of the lack of local tissue available for reconstruction and the belief that disease related outcomes inferior
- Endoscopic Laser excision
 - Increasing interest based on the primary Tx

experience

What about salvage with Transoral laser?

Evidence: Literature Review

- Computerized Medline search
- From 1990 to current
- Laryngeal neoplasm/AND salvage therapy
- Recurrent SCC after primary radiotherapy for Tis, T1, T2

Include $n \ge 20$, follow-up ≥ 2 years

Surgical Salvage TOL

	n T1/2	AC+	F/U		Total laryngectom Y
Ansarin Arch '07	37 19/18	78%	18-88 (44)	68%	30%
Steiner HN '04	21 11/10	62%	3-132 (38)	71%	19%
Quer '00	21	10%	30-126	76%	25%

Issues with TOL for salvage

- Literature limited
- Extended margins with high rates of +ve margins
- Many patients require multiple procedures
- Is the ultimate laryngectomy rate higher than patients undergoing segmental procedures?

Salvage Vertical Partial Laryngectomy : outcomes

	N (T1/2)	LC (ultimate LC)	Total laryngectomy	DSS
Sewnaik HN '05	21 (14/7)	76% (100%)	19%	100%
Nibu HN '97	21 (17/4)	86% (100%)	14%	100%
Lavey AJS'91	25 (17/8)	96% (96%)	4%	92%

Salvage Vertical Partial Laryngectomy : outcomes

	n T1/2	LOS M (range)	Complications	G-tube Swal days
Sewnaik HN '05	21 (14/7)	12 (7-28)	10% Fistula 15% Chondritis	0% 12 (1-34)
Nibu HN '97	21 (17/4)	?	10% Fistula	0% 10 (4-19)
Lavey AJS '91	25 (17/8)	11	4% Fistula 4% Chondritis	0% 7

Salvage Vertical Laryngectomy

Vocal Cord Reconstruction

Direct Closure
Epiglottopexy
Cartilage Muscle Flap

VPL & TPFF Reconstruction

Strap muscle flap historical and

present

Free Tissue Transfer – TP Flap (Ralph Gilbert)

Stent?

What about supracricoid laryngectomy in the failure setting?

SUPRACRICOID PARTIAL LARYNGECTOMIES AFTER RADIATION FAILURE: A MULTI-INSTITUTIONAL SERIES

Raul Pellini, MD,¹ Barbara Pichi, MD,¹ Paolo Ruscito, MD,¹ Alberto Rinaldi Ceroni, MD,² Umberto Caliceti, MD,² Giuseppe Rizzotto, MD,³ Antonio Pazzaia, MD,³ Pasquale Laudadio, MD,⁴ Cesare Piazza, MD,⁵ Giorgio Peretti, MD,⁵ Diana Giannarelli, PhD,⁶ Giuseppe Spriano, MD¹

¹ Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Institute

"Regina Elena", Rome, Italy. E-mail: barbapichi@libero.it

- ² Department of Otorhinolaryngology, "Ospedale Sant'Orsola Malpighi", Bologna, Italy
- ³ Department of Otorhinolaryngology, "Ospedale Civile", Vittorio Veneto, Italy
- ⁴ Department of Otorhinolaryngology, "Ospedale Maggiore", Bologna, Italy
- ⁵ Department of Otorhinolaryngology, University of Brescia, Brescia, Italy
- ⁶ Biostatistical Unit, National Cancer Institute "Regina Elena", Rome, Italy

Accepted 29 May 2007 Published online 30 October 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hed.20709

FIGURE 1. T classification at the first diagnosis (cT), at the time of the recurrence (rcT) and after salvage surgery (rpT) in this study's patient population (N = 78).

Supracricoid for Radiation Failure

FIGURE 2. Overall and disease-free survival of patients treated by SCPLs after radiotherapy failure.

2017 suffernational Federary Mediana Medic Oncurrent

Salvage Organ Preserving Surgery vs Total Laryngectomy

$\frac{RT + OPS + / - TL}{RT + TL^*}$

 local control rate :
 76% - 96%
 70% - 94%

 ultimate control rate :
 88% - 100%
 91% - 95%

 disease-spec survival :
 86% - 100%
 86% - 98%

Laryngeal preservation in 70-80%

*Frata 2005; Garden, 2003; Mendenhall, 2001; Warde, 1998; Le, 1997 : N>3000

Summary RT failure early glottic

TOL appropriate for small volume recurrence-high risk of local failure

Open partial procedures have higher rates of loco-regional control with options vertical partial or supracricoid

> Laryngeal and functional preservation possible in a high percentage of patients with disease amenable to partial surgery

Summary

Surgery has an important role in the management of early and advanced stage laryngeal cancer

New techniques in Reconstructive and Minimally Invasive Surgery have the potential to improve outcomes

There is no "Treatment of Choice" but rather "Choices in Treatment"

Summary

- 1. Focus of the management of patients with laryngeal carcinoma should be the preservation of functional speech and swallowing.
- 2. A variety of surgical and non-surgical techniques appear to have application in meeting this goal.
- 3. The surgical community has the responsibility to subject new surgical approaches to clinical trials before the wide acceptance and application of these techniques.

nd Neck Oocule#

Goals: Achieve Cure Laryngeal Preservation Improved Quality of Life

University Health Network

